Go to the source code of this file.
|
void | modMatMat (size_t N, MODULAR_NUMBER_TYPE *A, MODULAR_NUMBER_TYPE *B, MODULAR_NUMBER_TYPE *C, MODULAR_NUMBER_TYPE m) |
| Compute A*B % m. More...
|
|
void | modMatPowLog2 (size_t N, MODULAR_NUMBER_TYPE *A, MODULAR_NUMBER_TYPE *B, MODULAR_NUMBER_TYPE m, cl_uint e) |
| Compute matrix B = (A^(2^e) % m) More...
|
|
void | modMatPow (size_t N, MODULAR_NUMBER_TYPE *A, MODULAR_NUMBER_TYPE *B, MODULAR_NUMBER_TYPE m, cl_uint n) |
| Compute matrix B = A^n % m. More...
|
|
◆ MATRIX_ELEM
#define MATRIX_ELEM |
( |
|
mat, |
|
|
|
i, |
|
|
|
j |
|
) |
| (mat[i * N + j]) |
◆ MODULAR_CH
◆ modMatMat()
void modMatMat |
( |
size_t |
N, |
|
|
MODULAR_NUMBER_TYPE * |
A, |
|
|
MODULAR_NUMBER_TYPE * |
B, |
|
|
MODULAR_NUMBER_TYPE * |
C, |
|
|
MODULAR_NUMBER_TYPE |
m |
|
) |
| |
◆ modMatPow()
void modMatPow |
( |
size_t |
N, |
|
|
MODULAR_NUMBER_TYPE * |
A, |
|
|
MODULAR_NUMBER_TYPE * |
B, |
|
|
MODULAR_NUMBER_TYPE |
m, |
|
|
cl_uint |
n |
|
) |
| |
Compute matrix B = A^n % m.
◆ modMatPowLog2()
void modMatPowLog2 |
( |
size_t |
N, |
|
|
MODULAR_NUMBER_TYPE * |
A, |
|
|
MODULAR_NUMBER_TYPE * |
B, |
|
|
MODULAR_NUMBER_TYPE |
m, |
|
|
cl_uint |
e |
|
) |
| |
Compute matrix B = (A^(2^e) % m)