Bibliography
Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on neural networks, 14(6), 1569-1572. https://doi.org/10.1109/TNN.2003.820440
Knight, J. C., & Nowotny, T. (2018). GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating a Highly-Connected Cortical Model. Frontiers in Neuroscience, 12(December), 1–19. https://doi.org/10.3389/fnins.2018.00941
Morrison, A., Diesmann, M., & Gerstner, W. (2008). Phenomenological models of synaptic plasticity based on spike timing. Biological Cybernetics, 98, 459–478. https://doi.org/10.1007/s00422-008-0233-1
Nowotny, T., Huerta, R., Abarbanel, H. D., & Rabinovich, M. I. (2005). Self-organization in the olfactory system: one shot odor recognition in insects. Biological cybernetics, 93, 436-446. https://doi.org/10.1007/s00422-005-0019-7
Potjans, T. C., & Diesmann, M. (2014). The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network Model. Cerebral Cortex, 24(3), 785–806. https://doi.org/10.1093/cercor/bhs358
Rulkov, N. F. (2002). Modeling of spiking-bursting neural behavior using two-dimensional map. Physical Review E, 65(4), 041922. https://doi.org/10.1103/PhysRevE.65.041922
Traub, R. D., & Miles, R. (1991). Neuronal networks of the hippocampus (Vol. 777). Cambridge University Press.
Turner, J. P., Knight, J. C., Subramanian, A., & Nowotny, T. (2022). mlGeNN: accelerating SNN inference using GPU-enabled neural networks. Neuromorphic Computing and Engineering, 2(2), 024002. https://doi.org/10.1088/2634-4386/ac5ac5
Zenke, F., & Ganguli, S. (2018). SuperSpike: Supervised Learning in Multilayer Spiking Neural Networks. Neural Computation, 30(6), 1514–1541. https://doi.org/10.1162/neco_a_01086